1. Пат. 2542273 РФ, МПК С 01 G 23/00, C 01 D 15/00, C 04 B 35/462 (2006/01), H01M 4/485 (2010.01). Способ получения титаната лития со структурой шпинели / Иваненко В.И., Локшин Э.П., Владимирова С.В., Якубович Е.Н.; Федер. гос. бюджетное учреждение науки Ин-т химии и технологии редких элементов и минер. сырья им. И.В.Тананаева Кол. науч. центра РАН (ИХТРЭМС КНЦ РАН). - № 2013152554/05; заявл. 26.11.13; опубл. 20.02.15, Бюл. № 5.
Изобретение может быть использовано при получении электродных материалов для литий-ионных химических источников тока. Для получения титаната лития состава Li4Ti5O12 со структурой шпинели готовят раствор соли титана. В качестве соли титана используют хлорид и/или сульфат. В раствор соли титана вводят гидроксид аммония с получением в твердой фазе гидратированного титаната аммония. Твердую и жидкую фазы разделяют фильтрацией. Гидратированный титанат аммония обрабатывают раствором гидроксида лития при мольном отношении Li:Ti=(1,0-1,04):1,0 и температуре 75-95°С в течение не более 1 часа с получением литийтитансодержащего соединения. Выделение этого соединения проводят фильтрацией, а затем прокаливают его при температуре 650-800°С в течение 0,5-2,0 часов. Полученный титанат лития промывают деионизированной водой. Изобретение позволяет уменьшить расход гидроксида лития, снизить длительность и энергоемкость процесса получения высокочистого титаната лития, обеспечить высокие характеристики электродов литиевых аккумуляторов, стабильных при многократном числе циклов «заряд-разряд». 2 з.п. ф-лы, 5 пр.
2. Пат. 2551292 РФ, МПК С 01 F 11/46, 17/00, С 22 B 3/08, B 01 J 39/00 (2006.01). Способ переработки фосфогипса / Локшин Э.П., Тареева О.А., Ким Владимир, Ефимов Ю.С., Костинец А.М.; Федер. гос. бюджетное учреждение науки Ин-т химии и технологии редких элементов и минер. сырья им. И.В.Тананаева Кол. науч. центра РАН (ИХТРЭМС КНЦ РАН). - № 2014108085/05; заявл. 03.03.14; опубл. 20.05.15, Бюл. № 14.
Изобретение может быть использовано в химической промышленности для комплексной переработки фосфогипса - фосфополугидрата или фосфодигидрата. Способ переработки фосфогипса включает его предварительную водную обработку. Затем фосфогипс выщелачивают путем пропускания раствора серной кислоты с концентрацией 3-6 мас.% через его слой с вытеснением и отделением водного раствора и переводом РЗЭ и примесных компонентов, в том числе тория, в раствор выщелачивания. Далее проводят нейтрализацию промытого фосфогипса с получением гипсового продукта. РЗЭ и торий извлекают из раствора выщелачивания сорбцией с использованием сульфоксидного катионита и образованием обедненного по РЗЭ и торию сернокислого раствора, который используют в обороте. После этого проводят десорбцию РЗЭ и тория из насыщенного катионита с получением десорбата. При этом десорбцию РЗЭ ведут путем обработки катионита раствором соли аммония с последующим осаждением РЗЭ из десорбата аммонийсодержащим осадителем и отделением осадка РЗЭ. Выщелачивание фосфогипса раствором серной кислоты ведут при Ж:Т не менее 1,4:1. Десорбцию РЗЭ и тория из насыщенного катионита осуществляют последовательно: вначале тория путем обработки катионита сернокислым раствором с концентрацией 3-6 мас.% с получением торийсодержащего десорбата, а затем РЗЭ с получением десорбата, содержащего РЗЭ. Изобретение позволяет исключить образование радиоактивного ториевого осадка при обеспечении высокого качества гипсового продукта, повысить степень извлечения РЗЭ в нерадиоактивный редкоземельный концентрат. 4 з.п. ф-лы, 3 пр.
3. Пат. 2552602 РФ, МПК С 22 B 59/00, 3/08 (2006.01). Способ переработки фосфогипса / Локшин Э.П., Тареева О.А., Ким В., Ефимов Ю.С., Костинец А.М.; Федер. гос. бюджетное учреждение науки Ин-т химии и технологии редких элементов и минер. сырья им. И.В.Тананаева Кол. науч. центра РАН (ИХТРЭМС КНЦ РАН). - № 2014121131/05; заявл. 23.05.14; опубл. 10.06.15, Бюл. № 16.
Изобретение относится к способу переработки фосфогипса. Способ включает водную обработку, выщелачивание фосфогипса раствором серной кислоты с концентрацией 3-6 мас.% с переводом РЗЭ, кальция и тория в раствор выщелачивания и с получением гипсового продукта, извлечение РЗЭ, кальция и тория из раствора выщелачивания сорбцией сульфоксидным катионитом. При этом выщелачивание ведут раствором серной кислоты при Ж:Т не менее 1,4:1. Сорбцию РЗЭ, кальция и тория осуществляют стадийно. На первой стадии раствор выщелачивания пропускают через катионит до начала проскока РЗЭ в образующийся первичный обедненный сернокислый раствор. Затем проводят десорбцию кальция и тория из насыщенного катионита первичным обедненным сернокислым раствором с получением первичного кальций-торийсодержащего десорбата. На второй стадии через катионит пропускают оставшийся раствор выщелачивания до начала проскока РЗЭ во вторичный обедненный сернокислый раствор, который используют для десорбции кальция и тория с получением вторичного кальций-торийсодержащего десорбата. Затем проводят десорбцию РЗЭ раствором нитрата аммония и осаждение из десорбата РЗЭ при pH 7,35-7,5. Техническим результатом является получение нерадиоактивного редкоземельного концентрата с извлечением РЗЭ из фосфогипса в нерадиоактивный концентрат 77,88% и со снижением расхода используемого сорбента в среднем в 1,6 раза. 5 з.п ф-лы, 5 пр.
4. Пат. 2567314 РФ, МПК C 01 G 23/00, C 01 B 33/20 (2006.01). Способ получения кристаллического титаносиликата / Калашникова Г.О., Николаев А.И., Герасимова Л.Г., Селиванова Е.А., Яковенчук В.Н., Иванюк Г.Ю., Пахомовский Я.А., Кривовичев С.В.; Федер. гос. бюджетное учреждение науки Ин-т химии и технологии редких элементов и минер. сырья им. И.В.Тананаева Кол. науч. центра РАН (ИХТРЭМС КНЦ РАН), Федер. гос. бюджетное учреждение науки Кол. науч. центр РАН. - № 2014114241/05; заявл. 10.04.14; опубл. 10.11.15, Бюл. № 31.
Изобретение может быть использовано при получении сорбентов для очистки воды от токсичных неорганических веществ. Исходный каркасный титаносиликат Na3(Na,H)Ti2O2[Si2O6]2·2H2O обрабатывают 0,01-0,4 М раствором соляной кислоты в течение 0,5-2 часов с получением кристаллического слоистого титаносиликата Ti2(OH)2[Si4O10(OH)2](H2O)2. Затем титаносиликат подвергают модифицированию путем обработки 0,001-0,01 М раствором нитрата серебра или хлорида цезия в течение не более 24 часов при рН 6-12 и перемешивании. Выделяют титаносиликатную твердую фазу центрифугированием, промывают деионизированной водой при Т:Ж=1:(3-5) и сушат при температуре 70-100°С. Получают кристаллический каркасный титаносиликат (Mem,Н4-m)Ti2O2[Si2O6]2·nH2O, где Me - серебро или цезий, m=0,1-1,0, n=0,5-1,8. Изобретение позволяет получить интеркалированные каркасные титаносиликаты цезия и серебра с высокой регенерируемостью и сорбционной емкостью по иоду 13,84 и 14,1 мг/г, что соответствует степени извлечения 48,4 и 49,3%. 3 з.п. ф-лы, 5 пр.
5. Пат. 2571904 РФ, МПК С 01 G 23/053, C 22 B 3/08, 3/26 (2006.01). Способ переработки титансодержащего материала / Герасимова Л.Г., Касиков А.Г., Багрова Е.Г.; Федер. гос. бюджетное учреждение науки Ин-т химии и технологии редких элементов и минер. сырья им. И.В.Тананаева Кол. науч. центра РАН (ИХТРЭМС КНЦ РАН). - № 2014145044/05; заявл. 06.11.14.; опубл. 27.12.15, Бюл. № 36.
Изобретение может быть использовано в химической промышленности. Способ переработки титансодержащего материала включает выщелачивание измельченного материала серной кислотой при нагревании с получением суспензии. Затем суспензию фильтруют и отделяют твердый остаток от сернокислого раствора выщелачивания, содержащего соединения титана и железа. Проводят экстракционную обработку раствора выщелачивания, разделение органической и водной фаз, водную реэкстракцию, термический гидролиз с образованием гидроксида титана. Гидроксид титана отделяют и обжигают с получением диоксида титана. Выщелачивание титансодержащего материала осуществляют серной кислотой с концентрацией 600-800 г/л. Экстракционную обработку сернокислого раствора выщелачивания проводят с переводом 55-65 мас.% серной кислоты в органическую фазу, а соединений титана, железа и остаточного количества серной кислоты - в водную фазу. Реэкстракцию ведут с получением раствора серной кислоты. Водную фазу обрабатывают постоянным электрическим током при плотности тока 0,02-0,10 А/см2 до обеспечения содержания Ti2O3 не более 5 г/л и подвергают термическому гидролизу. В качестве титансодержащего материала используют сфеновый, перовскитовый, ильменитовый концентраты с крупностью частиц не более 40 мкм. Изобретение позволяет повысить степень извлечения титана из титансодержащего материала в чистый диоксид титана, уменьшить объем материальных потоков, повысить экологичность. 8 з.п. ф-лы, 4 пр.